
areaDetector: A module for

EPICS area detector support
Mark Rivers

GSECARS, Advanced Photon Source

University of Chicago

ÅMotivation & goals for areaDetectormodule

ÅOverview of architecture

ÅDrivers for detectors & cameras

ÅPlugins for real-time processing

ÅViewers and other clients

ÅDemo with FLIR USB-3 camera

areaDetectorIntroductory Talk Outline

areaDetector- Goals

ÅDrivers for many detectors, especially those used at synchrotron beamlines

ïHandle detectors ranging from >500 frames/second to <1 frame/second

ÅBasic parameters for all detectors

ïE.g. exposure time, start acquisition, etc.

ïAllows generic clients to be used for many applications

ÅEasy to implement new detector

ïSingle device-driver C++ file to write. EPICS independent.

ÅEasy to implement detector-specific features

ïDriver understands additional parameters beyond those in the basic set

ÅMiddle-level plug-ins to add capability like regions-of-interest calculation,

file saving, etc.

ïDevice independent, work with all drivers

ïBelow the EPICS database layer for highest performance

ÅNDArray

ïN-Dimensional array.

ÅEverything is done in N-dimensions (up to 10), rather than 2. This is needed even for 2-D
detectors to support color.

ÅOther types of devices (Xspress3 and xMAP x-ray spectrometers, quad electrometers also
use NDArraysand areaDetectorplugins.

ïThis is what plug-ins callbacks receive from device drivers.

ÅNDAttribute

ïEach NDArray has a list of associated attributes (metadata) that travel with the array
through the processing pileline. Attributes can come from driver parameters, any
EPICS PV, or any user-written function.

ÅCan store motor positions, temperature, ring current, amplifier gains, etc. with each frame.

ÅWritten to disk files for TIFF, netCDF, and HDF5 file formats.

ÅNDArrayPool

ïAllocates NDArray objects from a freelist

ïPluginsaccess in readonlymode, increment reference count

ïEliminates need to copy data when sending it to callbacks.

areaDetectorïData structures

ADBase

.template

Standard asyn device support

(device-independent)

Vendor API

Driver

Channel Access Clients (CSS, medm, Python, ImageJ, SPEC, etc.)

EPICS areaDetector Architecture

xxxDriver

.template

Hardware

C++ Base classes

(NDArray,

asynPortDriver,

asynNDArrayDriver,

ADDriver,

NDPluginDriver)

Layer 5

Standard

EPICS records

Layer 4

EPICS device

support

Layer 3

Plug-ins

Layer 1

Hardware API

Layer 2

Device drivers

Layer 6

EPICS CA clients

StdArrays
File

(HDF5, netCDF,

TIFF, JPEG)

NDPluginXXX.

template

Channel access

Record/device support

asynInt32, Float64, Octet

asynGenericPointer (NDArray)

asynXXXArray

C library calls

NDPluginBase

.template

ROIProcess

Detector Drivers

Currently ~35 detector drivers covering a wide variety of detectors.

ÅSimulation driver

ÅGigE cameras (Prosilica/AVT, Point Grey/FLIR, any GigEVisioncamera via
aravislibrary)

ÅFLIR and AVT USB-3.x cameras

ÅDectrisPilatus and Eigerpixel array detectors

ÅPrinceton Instruments and Photometrics detectors and spectrometers

ÅAndor CCD and CMOS cameras

ÅPerkin Elmer and Dexelaflat panel detectors

ÅWeb cameras and Axis video servers

ÅMany more (Basler, Pixirad, Photonic Sciences, etc.)

ADBase.adlïGeneric control screen

ÅWorks with any detector

ÅNormally write custom control for

each detector type

ïHide unimplemented features

ïExpose driver-specific features

simDetector: Detector-specific screen

Å1024x1024 pixels

Å16-bit integer images

Å485 frames/s

Å~1GB/s

Å3 simulation modes, LinearRamp, Peaks, Sine Waves.

ÅIndependent gains for X, Y, Overall, Red, Green, Blue

ÅLinear ramp has X and Y linear ramp with array index, each cycle just adds value to each

pixel. Very fast.

ÅPeak mode is array of Gaussian peaks plus noise. Slower.

ÅSine mode is 2 sine waves in each of Y and Y, summed or multiplied. Slower.

simDetectorDriver

simDetector: Linear Ramp Mode

simDetector Peaks mode with FFT

simDetector: Sine mode

Pilatus specific control screen

URL Driver

ÅDriver that can read images from any URL.

ÅCan be used with Web cameras and Axis video servers.

ÅUses GraphicsMagickto read the images, and can thus handle a large number of image
formats (JPEG, TIFF, PNG, etc.).

ÅGeneric Interface for Cameras standard is the base for plug & play handling of cameras and

devices.

ñThe goal of GenICamTM (Generic Interface for Cameras) is to provide a generic programming interface

for all kinds of devices (mainly cameras), no matter what interface technology (GigE Vision, USB3 Vision,

CoaXPress, Camera Link HS, Camera Link etc.) they are using or what features they are implementing.

GenICam

ÅGenApi

ïDefines the mechanism used to provide the generic API via a self-describing XML file in the device.

Part of GenApiis the Schema, which defines the format of the XML file.

ÅSFNC (Standard Features Naming Convention)

ïStandardizes the name, type, meaning and use of device features, so that devices from different

vendors always use the same names for the same functionality.

ÅGenTL(Transport Layer)

ïStandardizes the transport layer programming interface. It is a low-level API to provide a standard

interface to a device regardless of the transport layer It allows enumerating devices, accessing device

registers, streaming data and delivering asynchronous events. GenTLalso has its own SFNC.

ÅEvery GenICam camera has an XML file inside it that can be accessed to determine the

cameras available ñfeaturesò.

ÅBy reading and parsing this XML file one can automatically generate the EPICS database

and OPI screens based on the specific features available in that camera. Small snippet for

PixelFormat:

<Enumeration Name=" PixelFormat " NameSpace="Standard">

<ToolTip>Format of the pixel data.</ToolTip>

<Description>Format of the pixel data.</Description>

<DisplayName >Pixel Format</ DisplayName >

<Visibility> Beginner</Visibility>

<pIsLocked >TLParamsLocked </ pIsLocked >

<ImposedAccessMode >RW</ImposedAccessMode >

<EnumEntry Name="Mono8" NameSpace="Standard">

<ToolTip>Pixel format set to Mono 8.</ToolTip>

<Description>Pixel format set to Mono 8.</Description>

<DisplayName >Mono 8</ DisplayName >

<pIsImplemented >Mono8Inq_Reg</ pIsImplemented >

<Value>0x01080001</Value>

</ EnumEntry >

GenICam XML Files

ÅGenICamis not open source

ÅThere is a reference implementation of the GenICam API, but it cannot be

released publicly

ïThis is a pain, but we need to live with it

Åaravisis an open-source toolkit based on reverse-engineering the GenICam

specifications and protocols.

ïBased on glib. Until recently was Linux-only, now also supports Windows.

ïPreviously supported only GigE, but now also supports USB

GenICam and aravis

ÅVendor APIs for GenICamcameras are very similar, and programming

straight to them results in lots of redundant code.

ÅInstead create a new areaDetectorbase class to support any GenICam camera

ÅMuch of the generic code is in this layer

ïImplements code to get and set GenICam features

ÅCreates the areaDetectorparameter library dynamically at iocInit from the

drvUserfields passed by each record.

ADGenICam

ÅDerived classes for real drivers

ïImplement the code to read and write features to the device

ïImplement the code to stream the images from the device

ÅADAravis

ïUses aravislibrary

ïLinux only (most versions, e.g. RHEL 7). Could in principle now make it work with Windows.

ÅADSpinnaker

ïDriver for FLIR/Point Grey cameras using their Spinnaker SDK

ïWindows and new versions of Linux (e.g. Ubuntu 18, not RHEL 7)

ÅADVimba

ïDriver for AVT/Prosilicacameras using their Vimba SDK

ïWindows and Linux (most versions, e.g. RHEL 7)

ÅADVimba

ïDriver for AVT/Prosilicacameras using their Vimba SDK

ïWindows and Linux (most versions, e.g. RHEL 7)

ADGenICam

ÅFind the cameras
corvette: ADAravis >bin/linux - x86_64/arv - tool - 0.6

Allied Vision Technologies - 02- 2142A- 06178 (164.54.160.58)

Allied Vision Technologies - 02- 2604A- 07008 (164.54.160.104)

Allied Vision Technologies - 50- 0503317598 (164.54.160.62)

Allied Vision Technologies - 50- 0503419258 (164.54.160.21)

PointGrey - 13481965 (164.54.160.114)

Prosilica - 02- 2142A- 06110 (164.54.160.57)

ÅExtract the XML file
>arv - tool - 0.6 - n PointGrey - 13481965 genicam > BFly - 20E4C.xml

ÅLook at the XML file
>more BFly - 20E4C.xml

PointGrey - 13481965 (164.54.160.114)

<?xml version="1.0" encoding="UTF - 8"?>

<! ð

<RegisterDescription

xmlns:xi ="http://www.w3.org/2003/XInclude"

é

ÅMust run this once on Linux for each new camera type to create XML file.

arv-tool (from aravis package)

ÅCreate the database with makeDb.py
>scripts/makeDb.py BFly - 20E4C.xml BFly - 20E4C.template

ÅSnippet of the template file
record(ai , "(P)(R) GC_ExposureTime_RBV ") {

field(DTYP, "asynFloat64")

field(INP, "@ asyn ($(PORT),$(ADDR=0),$(TIMEOUT=1)) GC_D_ExposureTime ")

field(PREC, "3")

field(SCAN, "I/O Intr ")

field(DISA, "0")

}

record(ao, "(P)(R) GC_ExposureTime ") {

field(DTYP, "asynFloat64")

field(OUT, "@ asyn ($(PORT),$(ADDR=0),$(TIMEOUT=1)) GC_D_ExposureTime ")

field(PREC, "3")

field(DISA, "0")

}

ÅCreates output and readbackrecord for each feature that the camera supports.

Python tool to create template file from XML file

ÅCreate the medmfiles with makeAdl.py
>scripts/makeAdl.py BFly - 20E4C.xml BFly - 20E4C

>ls - l *. adl

- rw - rw - r -- 1 epics domain users 54593 Apr 17 16:53 BFly - 20E4C- features_1.adl

- rw - rw - r -- 1 epics domain users 48936 Apr 17 16:53 BFly - 20E4C- features_2.adl

- rw - rw - r -- 1 epics domain users 21322 Apr 17 16:53 BFly - 20E4C- features_3.adl

ÅSnippet of the adl file
(Menu Button)

menu {

object {

x=235

y=520

width=150

height=20

}

control {

chan ="(P)(R) GC_SaturationAuto "

clr =14

bclr =51

}

}

Python tool to create medm files from XML file

Main medm screen for ADGenICam

Identical screens are provided for CSS/BOY, Phoebus, caQtDM and EDM via auto-convert

Auto-generated medm screens for PGR BlackflyS 13Y3M

Screen #1

ÅADSpinnakerdriver for all cameras from FLIR/Point Grey using their

Spinnaker SDK.

ÅGigE, USB 3.0, and 10 GigE camera

ÅHigh performance, low cost

ÅI will demonstrate USB-3.0 camera today

ÅExample models:

FLIR/Point Grey drivers

Model Interface Resolution Price Measured

Speed

(frames/s)

Measured

Speed

(MB/s)

BlackFlyS

BF2-PGE-13Y3M

1-Gbit Ethernet 1280x1024 $415 83 frames/s 104 MB/s

Grasshopper3

GS3-U3-23S6M

USB-3 1920x1200 $1,179 156 frames/s 343 MB/s

Oryx

ORX-10G-51S5M

10-Bbit Ethernet 2448x2048 $2,258 163 frames/s 779 MB/s

- e2v EV76C570CMOS sensor

- Global shutter

- 29 x 29 x 30 mm

- Power Over Ethernet

- 4.5 micron pixels

- 1600 x 1200 pixels, color or mono

- 50 frames/s

- $525

FLIR/Point Grey GigE Camera

BlackFly PGE-20E4C

Å1920 x 1200 global shutter CMOS

ÅSony IMX174 1/1.2

ÅDynamic range of 73 dB

ÅPeak QE of 76%

ÅRead noise of 7e-

Å12-bit or 8-bit data

ÅMax frame rate of 162 fps

ï~356 MB/S, >3X faster than GigE

ÅUSB 3.0 interface

ÅUsed for tomography at 3 APS beamlines, replaced Andor Neo and PCO Edge

Å$1,179

FLIR/Point Grey USB-3.0 Camera

Grasshopper3 GS3-U3-23S6M

Å6464 x 4852 global shutter CMOS (31 MP)

Å10-Gbit Ethernet interface

ÅSony IMX342 3.45 micron pixels

ÅDynamic range of 66 dB

ÅPeak QE of 65%

ÅRead noise of 5.2e-

Å12-bit, 10-bit, or 8-bit data

ÅMax frame rate of 26 fps

ï778 MB/S, >8X faster than GigE

ÅUsed for tomography on 2 APS beamlines

Point Grey 10-Gbit Ethernet Camera

Oryx ORX -10G-310S9M

Model Resolution Price Speed (frames/s) Speed (MB/s)

ORX-10G-310S9M 6464x4852 $7,089 26 frames/s 778 MB/s

ORX-10G-123S6M 4096x3000 $4,666 68 frames/s 797 MB/s

ORX-10G-51S5M 2448x2048 $2,258 162 frames/s 774 MB/s

ORX-10GS-34S4M 2048x1536 $1,774 216 frames/s 648 MB/s

ADSpinnaker Driver

Plugins

ÅDesigned to perform real-time processing of data, running in the EPICS IOC (not over
EPICS Channel Access)

ÅReceive NDArray data over callbacks from drivers or other plugins

ÅPlug-ins can execute in their own threads (non-blocking) or in callback thread (blocking)

ïIf non-blocking then NDArray data is queued

ïIf executing in callback thread, no queuing, but slows driver

ÅAllows

ïEnabling/disabling

ïThrottling rate (no more than 0.5 seconds, etc)

ïChanging data source for NDArray callbacks to another driver or plugin

ÅPlugins can be sourcesof NDArray callbacks, as well as consumers
ïAllows creating a data processing pipeline running at very high speed, each in a different thread, and

hence in multiple cores on modern CPUs.

NDPluginDriver medm Screens

Plugins (continued)

ÅCurrently ~20 plugins that perform wide variety of operations

ÅNDPlugInStdArrays

ïReceives arrays (images) from device drivers, converts to standard arrays, e.g. waveform records.

ïThis plugin is what EPICS channel access viewers normally talk to.

ÅNDPluginPVA
ïConverts NDArrays to EPICS V4 NTNDArrays

ïExports the NtNDArraysover PVAccesswith internal V4 server

ïCan be used to send structured data to EPICS V4 clients

ïWhen used with the PVAccessdriver then areaDetectorplugins can be run on different machine from
the detector driver

ÅNDPluginROI

ïPerforms region-of-interest calculations

ïSelect a subregion. Optionally bin, reverse in either direction, convert data type.

ïDivide the array by a scale factor, which is useful for avoiding overflow when binning.

ÅNDPluginTransform

ïPerforms geometric operations (rotate, mirror in X or Y, etc.)

ÅNDPluginStats
ïCalculates basic statistics on an array (min, max, sigma)

ïOptionally computes centroid centroidposition, width and tilt.

ïOptionally Computes X and Y profiles, including average profiles, profiles at the centroid position,
and profiles at a user-defined cursor position.

ïOptionally computes the image histogram and entropy

ÅNDPluginROIStat
ïMultiple ROIs with simple statistics in a single plugin

ïMore efficient when many ROIs are needed, e.g. for peaks in a 1-D energy spectrum

ïMin, max, total, net, mean

ïTime-series of each of these statistics

Plugins (continued)

ÅNDPluginProcess
ïDoes arithmetic processing on arrays

ïBackground subtraction.

ïFlat field normalization.

ïOffset and scale.

ïLow and high clipping.

ïRecursive filtering in the time domain.

ïConversion to a different output data type.

ÅNDPluginOverlay
ïAdds graphic overlays to an image.

ïCan be used to display ROIs, multiple cursors, user-defined boxes, text, etc.

ÅffmpegServer

ïMJPEG server that allows viewing images in a Web browser. From DLS.

Plugins (continued)

ÅNDPluginAttribute
ïExtracts NDAttributesfrom NDArraysand publishes their values as ai records

ïCan collect time-series arrays of the attribute values

ÅNDPluginCircularBuff
ïBuffers NDArrays in a circular buffer

ïComputes a trigger expression using up to 2 NDAttributevalues

ïWhen trigger condition is met then outputs NDArrays

ïUser-specified number of pre-trigger and post-trigger arrays to output

ÅNDPluginTimeSeries
ïAccepts 1-D NDArrays[NumSignals] or 2-D [NumSignals,NewTimePoints] and

appends to time-series buffer

ïOperates in fixed length (stop when full) or circular buffer modes

ïOptional time-averaging of input data

Plugins (continued)

ÅNDPluginFFT
ïComputes FFT of 1-D or 2-D NDArrays

ïExports NDArrayscontaining the absolute value (power spectrum) of the FFT

ïExports 1-D arrays of the FFT real, imaginary, absolute values, and time and
frequency data.

ÅNDPluginColorConvert

ïConvert from one color model to another (Mono, RGB1 (pixel), RGB2 (row) or RGB3

(planar) interleave)

ïBayer conversion removed from this plugin, now part of Prosilicaand Point Grey drivers.

Plugins (continued)

commonPlugins.adlAll plugins at a glance

ROI plugin

Statistics plugin

Statistics plugin (continued)

